How does myelination affect nerve impulse conduction velocity?

Nerve impulses are propagated in the form of action potentials, involving the rapid depolarisation of the nerve cell membrane from  -70mV to +30mV, before repolarisation occurs returning the membrane potential to -70mV. This cycle of depolarisation and repolarisation is propagated along the nerve cell as an electrical signal. Myelinated axons are covered in a protective, lipid rich myelin sheath produced by Schwann cells. This insulates regions of the nerve cell, so they cannot depolarise. Regions that lack myelin are called “nodes of Ranvier” and these become the only areas where action potentials can form, resulting in “jumping” of the nerve impulse from node to node. This is called saltatory conduction. Saltatory conduction results in faster nerve impulse conduction velocity, as the action potentials can “jump” along the neuron. 

TW
Answered by Thomas W. Biology tutor

8902 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What types of infectious agents are there?


Describe how mutations in tumour suppressor genes can lead to the development of tumours


Describe and explain three differences between meiosis and mitosis


How many chromosomes dies each cell of the human body have ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning