Show that (1 - cos(2x)) / (1 + cos(2x)) = sec^2(x) - 1

First, take the side of the equation that looks most complicated because it often needs simplifying. This is the LHS in this case. The LHS has cos(2x) twice - therefore the double angle formula probably applies:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)In this case the cos(2x) = 2cos^2(x) - 1 looks most useful as we have sec^2(x) on the RHS of our equation and cos(x) = 1/sec(x).Sub the double angle formula into LHS:(1 - (2cos^2(x) - 1)) / (1 + (2cos^2(x) - 1)= (2 - 2cos^2(x)) / (2cos^2(x))= 2/2cos^2(x) - 2cos^2(x)/2cos^2(x)= sec^2(x) - 1= RHS.Therefore (1 - cos(2x)) / (1 + cos(2x)) = sec^2(x) - 1 

Answered by Louis G. Maths tutor

5851 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation?


The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


Why is the derivative of a function its gradient?


The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences