y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature

First differentiate the function to obtain
dy/dx = 6x^2 + 30x + 24
Then set this equal to 0 and solve to find the x values of the stationary points
6x^2 + 30x + 24 = 0
6(x^2 + 5x + 4) = 0
6(x +1)(x+4) = 0
therefore x = -1, -4
then to find the y values sub back into the original function to get
y = (2 x -1^3) + (15 x -1^2) + (24 x -1) + 10 = -1
y = (2 x -4^3) + (15 x -4^2) + (24 x -4) + 10 = 26
so the stationary points are (-1, -1) and (-4, 26)
to determine heir nature find the second differential by differentiating dy/dx = 6x^2 + 30x +24
which is 12x + 30
sub in the x values of the stationary points to obtain
(12 x -1) + 30 = 18 this is positive so (-1, -1) is a minimum
(12 x -4) + 30 = -18 this is negative so (-4, 26) is a maximum

KW
Answered by Kate W. Maths tutor

10314 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Mechanics 1: How do you calculate the magnitude of impulse exerted on a particle during a collision of two particles, given their masses and velocities.


How can the y=sin(x) graph be manipulated?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning