y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature

First differentiate the function to obtain
dy/dx = 6x^2 + 30x + 24
Then set this equal to 0 and solve to find the x values of the stationary points
6x^2 + 30x + 24 = 0
6(x^2 + 5x + 4) = 0
6(x +1)(x+4) = 0
therefore x = -1, -4
then to find the y values sub back into the original function to get
y = (2 x -1^3) + (15 x -1^2) + (24 x -1) + 10 = -1
y = (2 x -4^3) + (15 x -4^2) + (24 x -4) + 10 = 26
so the stationary points are (-1, -1) and (-4, 26)
to determine heir nature find the second differential by differentiating dy/dx = 6x^2 + 30x +24
which is 12x + 30
sub in the x values of the stationary points to obtain
(12 x -1) + 30 = 18 this is positive so (-1, -1) is a minimum
(12 x -4) + 30 = -18 this is negative so (-4, 26) is a maximum

Answered by Kate W. Maths tutor

9107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve a cubic?


Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences