(C3) Show that 4csc^2(x) - cot^2(x) = k can be expressed as sec^2(x) = (k-1)/(k-4) where k != 4

The student can answer this in several ways. One using the simple, known identities csc= 1/sin, cot=1/tan, sec=1/cos, tan=sin/cos, sin^2 + cos^2 = 1 and basic algebra is the following:
4csc^2 - cot^2 = k4/sin^2 - 1/tan^2 = k Substitute inverse fomulae4/sin^2 - cos^2/sin^2 = k Substitute tan4 - cos^2 = ksin^2 4 - cos^2 = k(1-cos^2) Write in terms of Coskcos^2 - cos^2 = k - 4cos^2(k - 1) = k-4 Gather Cos terms(k-1)/(k-4) = sec^2 Write in terms of inverses

FH
Answered by Fearghus H. Maths tutor

3596 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate terms with sin^2(x) and cos^2(x) in them? For example integrate (1+sin(x))^2 with respect to x


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


Find the area bounded by the curve x^3-3x^2+2x and the x-axis between x=0 and x=1.


Question 6 from Aqa 2017 June paper for C4, the vector question


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning