The first floor of an ancient japanese tower has 150 steps. Each floor above has 5 fewer floors than the previous. So, the second floor has 145 steps, the third 140 etc. How many floors does the tower have if the final floor has 30 steps leading to it.

Note this is an arithmetic series problem, so we use the equation: xn = a + d(n-1).
Number of steps on the first floor is 'a', i.e. a = 150.
Difference in the number of steps on each subsequent floor is -5 because there are '5 fewer than the previous', i.e. d = -5.
We are given that the number of steps leading to the final floor is 30, hence xn = 30.
Our unknown 'n' denotes the number of floors. So rearranging the arithmetic series equation for n gives:
n = (xn - a)/d + 1.
Hence n = (30-150)/(-5) + 1 = 25. The number of floors in our temple is 25.

JF
Answered by Joel F. Maths tutor

3207 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the volume of a right angled triangular prism with an angle of 28 degrees, hypotenuse of length 10 cm, and projected length of 12.5 cm. Give your answer in cm^3, to three significant figures.


How do you factorize a quadratic when a ≠ 1 when ax²+bx+c=0


Make n the subject of the formula: m = 5n - 21


A scalene triangle ABC has side lengths AB=6cm, BC=4cm, and AC=x cm. The angle A, opposite BC, is 40 degrees and the angle B, opposite AC, is 50 degrees. State the sine rule and use it to find the value of x to 3 s.f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning