Where does integration by parts come from?

The best way to do well in maths, is to learn where things come from. Mastering the basics makes everything else much easier!
To start, consider the product rule with two functions u(x) and v(x) (using dashes to represent derivatives. e.g. y' is equal to dy/dx):
-> (uv)' = uv' + u'v
Now integrate both sides with respect to x:
-> ∫(uv)' dx = uv' + u'v dx -> ∫(uv)' dx = uv' dx + u'v dx
Now look closely at the left hand side of the equation. The integral and the derivative cancel each other out, so the term can now simply become uv :
-> uv = uv' dx + u'v dx
We can now rearrange the equation into something that will be useful to us:
-> uv' dx = uv - u'v dx
This is the integration by parts formula, we can now go over how to use this derivation to solve integration problems such as: 3x e3x dx
(Tip: be careful what you choose as u and v, otherwise you could make life much harder for yourself!)

Answered by Tom M. Maths tutor

2550 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


How do you resolve forces on an object on an angled plane?


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


Express 2 ln(3) + ln(11) as a single natural logarithm


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences