Solve the simultaneous equations: 2x + 3y = 5 and 3x + 4y = 12

  1. 2x + 3y = 52. 3x + 4y = 12
    Firstly, you want to have the same amount of x variables, or y variables. To get the same x, we multiply 1. by 3, and multiply 2. by 2, giving us:
    3. 6x + 9y = 154. 6x + 8y = 24
    Now, subtract 4. from 3. and you get:y = -9
    Using this information, substitute it into any of the 4 equations, and solve to find x.
    Subbing into 3. gives us:6x + 9(-9) = 156x - 81 = 156x = 96x = 16
Answered by Quincy O. Maths tutor

5713 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the square of an odd number is always 1 more than a multiple of 4


Work out the solutions to the following quadratic equation: x² + 7x + 10 = 0 by factorising.


Solve the equation (2x+3)/(x-4)-(2x-8)/(2x+1)=1 and give the answer to 2 decimal places


Solve the simultaneous equations: 3x + 4y = 5 and 2x – 3y = 9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences