Anne picks a 4-digit number. The first digit is not zero. The 4-digit number is a multiple of 5. How many different 4-digit numbers could she pick?

We know that a digit can be a number between 0 and 9. In this case, the first digit can't be 0, so it has to be a number between 1 and 9. So, we have 9 possible choices for the first digit (1,2,3,4,5,6,7,8,9).The next thing we know is that the number is divisible by 5. Therefore, the final digit of the number must be either 0 or 5. That means that we can only have 2 choices for the fourth digit.Now the second and third digits have no restrictions, so they can be any number between 0 and 9. So for the second digit, we have 10 possible choices (0,1,2,3,4,5,6,7,8,9) and the same applies to the third digit as well. To count the possible number that Anne could pick, we simply multiply the choices we have for each digit and so we get 9210*10=1800

Answered by XENI D. Maths tutor

8789 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Consider the right angled triangle with vertices labelled a, b, c. Angle A = 60°, Angle B = 90°, length ab=4cm, length ac=xcm. If cos60° = 0.5, work out the value of x.


Make s the subject of: v^2= u^2+2as


Rearrange y = (3x+5)/x to make x the subject


Solve the inequality x^2 – 9x – 22 ≥ 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences