What is the derivative with respect to x of the function f(x)=1+x^3+ln(x), x>0 ?

Despite the hideous view, we can apply to this function the same methodology as all the other ones: break it down to pieces. What we mean is that we recognize three terms inside f(x): one is the number 1 alone, a contant with derivative 0; another is the plolynomial function x^3 with derivative 3x^2; and the last one is the natural logarithm (in base e) with derivative 1/x. Note that the last term makes sense because we don't divide by 0 since our domain x>0 excludes that possibility. Finally, the derivative is lineal, meaning that the derivative of the sum is the sum of the derivative. This allows us to write the derivative of f with respect to x: df/dx(x)= 3x^2+1/x.

Answered by Maria L. Maths tutor

2784 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the binomial distribution and when should I use it?


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences