Describe the photoelectric effect and what it tells us about the properties of light .

The photoelectric effect describes the process by which surface electrons are emitted from a metal when light is shined on it. This occurs because the electrons are able to absorb the electromagnetic energy and escape the surface of the metal.

During the photoelectric effect we observe that electrons will not be emitted from the surface of the metal if the light intensity is increased unless the incident light is above a certain frequency known as the threshold frequency. Above this frequency, increasing the intensity of the light increases the number of electrons emitted.  This tells us that light at a higher intensity must contain more quanta of energy, known as photons. These photons collide with the electrons and excite them out of the metal's surface.

Increasing the frequency of the light above the threshold frequency increases the maximum kinetic energy of the electrons released, proving that at a higher frequency each photon has more energy (Energy = Planck's constant * Frequency). Below the threshold frequency, the photons don't have enough energy to excite the electrons off the surface of the metal. This effect therefore illustrates light behaving as a particle, because if it was a wave, increasing the intensity of the light would result in electron emission, but it does not. 

Answered by Lorenzo C. Physics tutor

13837 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A basketball player throws his ball vertically upwards with an initial speed of v=40 m/s. Ignore air resistance. What is the speed of the ball at half of the maximum height?


If a bulb has a current of 20mA and voltage of 5V, and the current cost of electricity is £3 for a kW/hour. How much money would you spend to power the bulb for 8 hours? Are these good estimates for the current, voltage and cost of electricity?


If a star with a radius of 600000km has a surface temperature of 6000K, calculate its luminosity


How can we derive the 'suvat' equations of motion v=u+at and s=(u+v)t/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences