Describe the photoelectric effect and what it tells us about the properties of light .

The photoelectric effect describes the process by which surface electrons are emitted from a metal when light is shined on it. This occurs because the electrons are able to absorb the electromagnetic energy and escape the surface of the metal.

During the photoelectric effect we observe that electrons will not be emitted from the surface of the metal if the light intensity is increased unless the incident light is above a certain frequency known as the threshold frequency. Above this frequency, increasing the intensity of the light increases the number of electrons emitted.  This tells us that light at a higher intensity must contain more quanta of energy, known as photons. These photons collide with the electrons and excite them out of the metal's surface.

Increasing the frequency of the light above the threshold frequency increases the maximum kinetic energy of the electrons released, proving that at a higher frequency each photon has more energy (Energy = Planck's constant * Frequency). Below the threshold frequency, the photons don't have enough energy to excite the electrons off the surface of the metal. This effect therefore illustrates light behaving as a particle, because if it was a wave, increasing the intensity of the light would result in electron emission, but it does not. 

Answered by Lorenzo C. Physics tutor

13834 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


What does a negative velocity mean?


A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)


Electrons are accelerated through a potential difference of 300 V. What is their final de Broglie wavelength?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences