The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.

The equation for a line is y(x)=ax+b.Because it intersects the y axis at x=0 at y=1y(x)=b=1a is equal to the gradient of the function so the line is given as y(x)=3x+1In order to get the two intersections we need to solve the following equation system:(1) x2+y2=1(2) y=3x+1
(1) x2+(3x+1)2=1 x2+9x2 +1+6x=1 10x2+6x=0Then solving it for x we get x=0 y=1 and x=-3/5 y=-4/5



Related Further Mathematics GCSE answers

All answers ▸

Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


Find dy/dx when y=2x^(4)+3x^(-1)


How many different ways are there to seat 6 people at a round table?


Let Curve C be f(x)=(1/3)(x^2)+8 and line L be y=3x+k where k is a positive constant. Given that L is tangent to C, find the value of k. (6 marks approx)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences