The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.

The equation for a line is y(x)=ax+b.Because it intersects the y axis at x=0 at y=1y(x)=b=1a is equal to the gradient of the function so the line is given as y(x)=3x+1In order to get the two intersections we need to solve the following equation system:(1) x2+y2=1(2) y=3x+1
(1) x2+(3x+1)2=1 x2+9x2 +1+6x=1 10x2+6x=0Then solving it for x we get x=0 y=1 and x=-3/5 y=-4/5



CB
Answered by Csaba B. Further Mathematics tutor

3222 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.


If y=(x^2)*(x-10), work out dy/dx


Work out the gradient of the curve y=x^3(x-3) at the point (3,17)


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning