The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.

The equation for a line is y(x)=ax+b.Because it intersects the y axis at x=0 at y=1y(x)=b=1a is equal to the gradient of the function so the line is given as y(x)=3x+1In order to get the two intersections we need to solve the following equation system:(1) x2+y2=1(2) y=3x+1
(1) x2+(3x+1)2=1 x2+9x2 +1+6x=1 10x2+6x=0Then solving it for x we get x=0 y=1 and x=-3/5 y=-4/5



Related Further Mathematics GCSE answers

All answers ▸

Find the stationary point of 3x^2+7x


Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences