How do I find the equation of a line between two points?

The equation of a line is written in the form y=mx+c where m is the gradient of the line and c is the y-intercept. These are the two values that we will need to calculate.For example, lets take the two points (2,2) and (6,4). We will label the two coordinates so that (2,2) is no.1 and (6,4) is no.2.To find the gradient, or slope, of the line we use the formula m=(y2-y1)/(x2-x1) where x1 is the x coordinate of no.1 and so on. Therefore, m=(4-2)/(6-2)= 1/2So we can now update our equation y=mx+c by substituting the m value to give y=0.5x+cTo find the c value, or the y-intercept, we then take one of our coordinates (either will work!)So for example, taking no.1, (2,2) and using x=2 and y=2 we can put this into our updated equation y=0.5x+c to give 2=(0.52)+cSolving this for c we get c=1 and then putting this into our equation we get y=0.5x+1 which is the line equation needed.

LR
Answered by Lucille R. Maths tutor

3374 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x)=x^2+12x+32=0, solve for x


Factorise 4xy-6xz


Kelly is trying to work out the two values of w for which 3w-w^3=2. Her values are 1 and -1. Are her values correct?


How do you solve the quadratic equation x^2+7x+12=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning