Solve 4x/(x+1) - 3/(2x+1) = 1

Firstly multiply through by (x+1)(2x+1) to get rid of the fractions and then expand the brackets. Then gather the terms on one side to get a quadratic equation (ie 3x^2 - x -2=0) and then simply solve this either by inspection or using the quadratic formula. We see that trying x=1 indeed gets us 0 hence we know that one root of the equation is (x-1) now all that's left is finding the other root which can be found by 'working backgrounds' ie what multiplies with x-1 to get 3x^2 - x -2. Doing this we obtain x=-2/3.

RB
Answered by Raban B. Maths tutor

4043 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


Use the chain rule to differentiate y=1/x^2-2x-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning