How is the factor theorem used?

The factor theorem is used to determine factors of large polynomials so that we can split large polynomials into a product of linear polynomials. Say we have a cubic polynomial of the form f(x)=x^3+bx^2+cx+d and we want to know if (x-a) is a factor we need only work out the value of f(a). We have that (x-a) is a factor if and only if f(a)=0 and so if f(a) is not equal to 0 then (x-a) is not a factor. If we want to know if (x+a) is a factor we simply find the value of f(-a).
We can understand the example above by factorising f(x). If we assume (x-a) is a factor of f(x) then we can write f(x)=(x-a)(x^2+ex+f). Here we can see that f(a)=(a-a)((x^2+ex+f) and so f(a)=0.

RD
Answered by Rob D. Maths tutor

3264 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of sin(x)/x^3 with respect to x


What does it mean to differentiate a function?


Differentiate arctan(x) with respect to x. Leave your answer in terms of x


I'm trying to integrate f(x)=sin(x) between 0 and 2 pi to find the area between the graph and the axis but I keep getting 0, why?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning