How is the factor theorem used?

The factor theorem is used to determine factors of large polynomials so that we can split large polynomials into a product of linear polynomials. Say we have a cubic polynomial of the form f(x)=x^3+bx^2+cx+d and we want to know if (x-a) is a factor we need only work out the value of f(a). We have that (x-a) is a factor if and only if f(a)=0 and so if f(a) is not equal to 0 then (x-a) is not a factor. If we want to know if (x+a) is a factor we simply find the value of f(-a).
We can understand the example above by factorising f(x). If we assume (x-a) is a factor of f(x) then we can write f(x)=(x-a)(x^2+ex+f). Here we can see that f(a)=(a-a)((x^2+ex+f) and so f(a)=0.

Answered by Rob D. Maths tutor

2894 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the second derivative used for?


A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


How do I find the roots of a quadratic equation?


Compute the indefinite integral of x^8 ln(3x)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences