How is the factor theorem used?

The factor theorem is used to determine factors of large polynomials so that we can split large polynomials into a product of linear polynomials. Say we have a cubic polynomial of the form f(x)=x^3+bx^2+cx+d and we want to know if (x-a) is a factor we need only work out the value of f(a). We have that (x-a) is a factor if and only if f(a)=0 and so if f(a) is not equal to 0 then (x-a) is not a factor. If we want to know if (x+a) is a factor we simply find the value of f(-a).
We can understand the example above by factorising f(x). If we assume (x-a) is a factor of f(x) then we can write f(x)=(x-a)(x^2+ex+f). Here we can see that f(a)=(a-a)((x^2+ex+f) and so f(a)=0.

RD
Answered by Rob D. Maths tutor

3076 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1


given y = x^2 - 7x + 5, find dy/dx from first principles


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences