A circle with center C has equation x^2 + y^2 + 8x - 12y = 12

Circle equation = (x - a)2 + (y - b)2 = r2Where Centre coordinates (a, b) and radius 'r'Therefore x2 + y2 + 8x - 12y = 12 is to be rewritten in this formComplete the square to find a and bThis gives(x+4)2 - 16 + (y - 6)2 - 36 = 12Simplify(x+4)2 + (y - 6)2 = 64Therefore refering to the top two linesCentre of the circle is (-4, 6) and Radius of the circle is 8

HK
Answered by Henry K. Maths tutor

8869 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of the equation y=x^2-8x+5 by completing the square.


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


How do you differentiate this


How do you resolve forces on an object on an angled plane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning