A circle with center C has equation x^2 + y^2 + 8x - 12y = 12

Circle equation = (x - a)2 + (y - b)2 = r2Where Centre coordinates (a, b) and radius 'r'Therefore x2 + y2 + 8x - 12y = 12 is to be rewritten in this formComplete the square to find a and bThis gives(x+4)2 - 16 + (y - 6)2 - 36 = 12Simplify(x+4)2 + (y - 6)2 = 64Therefore refering to the top two linesCentre of the circle is (-4, 6) and Radius of the circle is 8

Answered by Henry K. Maths tutor

8056 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you explain the product rule when differentiating?


Simple binomial: (1+0.5x)^4


A curve has the equation y = 4x^3 . Differentiate with respect to y.


The graph with equation y= x^3 - 6x^2 + 11x - 6 intersects the x axis at 1, find the other 2 points at which the graph intersects the x axis


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences