A circle with center C has equation x^2 + y^2 + 8x - 12y = 12

Circle equation = (x - a)2 + (y - b)2 = r2Where Centre coordinates (a, b) and radius 'r'Therefore x2 + y2 + 8x - 12y = 12 is to be rewritten in this formComplete the square to find a and bThis gives(x+4)2 - 16 + (y - 6)2 - 36 = 12Simplify(x+4)2 + (y - 6)2 = 64Therefore refering to the top two linesCentre of the circle is (-4, 6) and Radius of the circle is 8

HK
Answered by Henry K. Maths tutor

8708 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.


By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


Find the roots of this equation: y=(8-x)lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning