Compute the derivative of arcsin(x).

To compute the derivative of arcsin(x) we use the fact that it is the inverse of sine. Write y=arcsin(x). We want dy/dx. Taking sin on both sides yields sin(y)=x. Use implicit differentiation to differentiate both sides with respect to x. We obtain cos(y)*(dy/dx)=1 --> dy/dx=1/cos(y). Now sin(y)=x and we have the pythagorean identity sin^2(y)+cos^2(y)=1. This gives cos^2(y)=1-sin^2(y)=1-x^2 and so cos(y)=sqrt(1-x^2) (reason for choosing +sign is that cos(y)>0 on range of y=arcsin(x)). Thus dy/dx=1/sqrt(1-x^2). So derivative of arcsin(x) is 1/sqrt(1-x^2).

Related Further Mathematics A Level answers

All answers ▸

A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


solve the 1st order differential equation 2y+(x*dy/dx)=x^3


Write sin(4x) in terms of sin and cos.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences