How do I integrate cos^2x with respect to x?

This can be a very tricky question if you do not know how to approach it. Our first instinct may be to try a substitution, but this gets us nowhere. In fact, the trick is to make use of the identity cos2x = 2cos^2x - 1. This can then be rearranged to give us (cos2x + 1)/2 = cos^2x. Using this identity, our integration problem has suddenly become a lot easier - we can take the constant 1/2 outside of the integral leaving us to integrate the expression cos2x + 1. Integrating cos2x is simply a matter of reversing the chain rule, so the result of this integration is (sin2x)/2 + x. Finally, we multiply this by 1/2 (the constant we took outside the integral before) to give us a final result of (sin2x)/4 + x/2. Of course, don't forget the +C assuming this is an indefinite integral.Note that the same identity can help us integrate sin^2x as well. This is because we can rewrite the identity as cos2x = 2cos^2x - 1 = 1 - 2in^2x.

RS
Answered by Raiad S. Maths tutor

12144 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


Differentiate with respect to x: 4(x^3) + 2x


Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning