How do I integrate cos^2x with respect to x?

This can be a very tricky question if you do not know how to approach it. Our first instinct may be to try a substitution, but this gets us nowhere. In fact, the trick is to make use of the identity cos2x = 2cos^2x - 1. This can then be rearranged to give us (cos2x + 1)/2 = cos^2x. Using this identity, our integration problem has suddenly become a lot easier - we can take the constant 1/2 outside of the integral leaving us to integrate the expression cos2x + 1. Integrating cos2x is simply a matter of reversing the chain rule, so the result of this integration is (sin2x)/2 + x. Finally, we multiply this by 1/2 (the constant we took outside the integral before) to give us a final result of (sin2x)/4 + x/2. Of course, don't forget the +C assuming this is an indefinite integral.Note that the same identity can help us integrate sin^2x as well. This is because we can rewrite the identity as cos2x = 2cos^2x - 1 = 1 - 2in^2x.

RS
Answered by Raiad S. Maths tutor

12776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function y = x^5 + x^3/2 + x + 7 Express the following in their simplest forms: i) dy/dx ii) ∫ y dx


Differentiate y = lnx + 4x^2 + 3e^4x with respect to x


How do I find a stationary point on the curve?


given y=(1+x)^2, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning