Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).

This is an example of implicit differentiation where we have to consider both the y-terms as well as the x-terms. The first step is to deal with each term on the left hand side individually. This gives us 3y^2(dy/dx) - 8x for the first two terms. The '-3xy' however, requires the product rule which is v(du/dx) + u(dv/dx) in order for it to be differentiated. Using -3x as our value for u and y as our value for v giving us -3y-3x(dx/dy) when differentiated. The last term differentiates to give zero. Putting this altogether gives us: 3y^2(dy/dx) - 8x - 3y - 3x(dy/dx) = 0.The next step is to separate the (dy/dx) terms from the other terms by factorising and then taking the other terms to the other side giving us (dy/dx)(3y^2-3x)=8x+3y.We then rearrange to get (dy/dx) by itself in order to find the gradient using (dy/dx)=(8x+3y)/(3y^2-3x).We plug in the given values for the x and y-coordinates into the expression to find that the gradient is 1/3 which will also be the gradient of the tangent at that point. Using this in the equation for a straight line, which we are expected to know: y-y1=m(x-x1) where m is the gradient. This gives us y+3=(1/3)(x-2) as the equation of the tangent.

TJ
Answered by Tanmayi J. Maths tutor

4674 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


Expand and simplify (3 + 4*root5)(3 - 2*root5)


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


Find the values of x such that: (log3(81)+log2(32))/(log2(x)) = log2(x) (5 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning