How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1

(The full answer produced answer is annotated working out, but since this text box won't let me submit pictures, I'll do my best to transcribe)First, we gather the two fractions by using a common denominator:[(2x + 3)(2x+1) - (2x-8)(x-4)] / [(x-4)(2x+1)] = 1Then, we can multiply both sides of the equation by the common denominator to avoid having to deal with a fraction:(2x + 3)(2x+1) - (2x-8)(x-4) = (x-4)(2x+1)Expanding out the brackets allows us to gather like terms and simplify:4x^2 + 2x + 6x + 3 - [ 2x^2 - 8x - 8x + 32 ] = 2x^2 + x - 8x - 4with a second line of working:24x - 29 = -7x - 4and a third:31x = 25And so dividing both sides by 31 gives us a final answer of x = 25/31

Answered by Cal F. Maths tutor

2613 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Determine the nature of the roots of the quadratic equation x^2 + 6x + 8 = 0, and plot the graph of this function.


Make X the subject of the equation (9x-7)/3 = 8y


f(x) = 5x − 12. (i) Calculate f(4). (ii) Find f( x + 1). Give your answer in the form ax + b .


Solve the simultaneous equations '2X+Y=7' and '3X-Y=8'


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences