Find the differential of y(x)=(5x*Cos(3x))^2

Firstly I would state the substitution rule, letting 5xCos(3x)=w(x), and differentiating with respect to w(x). This gives y'(x)=2w'(x)(w(x)).I would then demonstrate the product rule stating where u and v are functions of x. That (uv)'=v'u+vu'. And apply this to the example giving w'(x)=5Cos(3x)-15xSin(3x).substituting w(x) and w'(x) back into the equation gives y'(x)=(10Cos(3x)-30xSin(3x))5xCos(3x)

HL
Answered by Harry L. Maths tutor

3648 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant


The straight line with equation y=3x-7 does not cross or touch the curve with equation y=2px^2-6px+4p, where p is a constant.(a) Show that 4p^2-20p+9<0 (b) Hence find the set of possible values for p.


Differentiate y=(5x^4)cos(2x)


What is a logarithm?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning