Prove algebraically that 
(2n + 1)^2 – (2n + 1) is an even number for all positive integer values of n. (3 marks)

We can show something is even if it is a multiple of two, as every multiple of two is even. It is useful to see certain tricks, and I will aim to teach you these in my tutorials, these tricks make problems easier and will save you time in your lessons and exams! (2n + 1)2 – (2n + 1) = (2n + 1) [(2n + 1) – 1] = (2n + 1) [2n] = 2 n(2n+1).As (2n + 1)2 – (2n + 1) is a multiple of two (as it is equal to 2n (2n+1)), we have shown that it is an even number for all positive integer values of n. 

Answered by Ben H. Maths tutor

4904 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 2x2+ 12x + 3 in the form p(x + q)2+ r


How do you break down a wordy question (e.g. Aled has three concrete slabs. Two slabs square, of length x, & the third rectangular of dimensions 1m & x+1m. Show 2x^2 +x-6=0 & Solve this)


How do you factorise a quadratic equation


How do I expand brackets?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences