The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


differentiate both side with respect to x : (dy/dx)e^(-2x)+y(-2e^(-2x)) = 2+2y(dy/dx)
rearrange it : (-2y+e^(-2x))(dy/dy) = 2 + 2ye^(-2x) ==> dy/dx = ( 2 + 2ye^(-2x) ) / ( -2y+e^(-2x) )

Answered by Jimmy C. Maths tutor

4536 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate x^2 + 7x + 4


Differentiate with respect to x: y=2^x


5Sin[x]-4=2Cos[2x]


Integrate the function f(x) where f(x)= x^2 +sin(x) + sin^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences