The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


differentiate both side with respect to x : (dy/dx)e^(-2x)+y(-2e^(-2x)) = 2+2y(dy/dx)
rearrange it : (-2y+e^(-2x))(dy/dy) = 2 + 2ye^(-2x) ==> dy/dx = ( 2 + 2ye^(-2x) ) / ( -2y+e^(-2x) )

JC
Answered by Jimmy C. Maths tutor

5504 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫(x^3+x^2+6)dx.


Find the exact solution of the following equation: e^(4x-3) = 11


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning