Given a differential equation (*), show that the solution curve is either a straight line or a parabola and find the equations of these curves.

This question is takes from the 2008 STEP I paper (Question 8). We are first given (dy/dx)^2 + x dy/dx + y = 0 where y is a function of x. Differentiating both sides of the equation with respect to x, gives: 2(dy/dx)(d2y/dx2) -dy/dx + x d2y/dx2 + dy/dx = 0 which gives 2(dy/dx)(d2y/dx2) + x d2y/dx2 = 0. Factorising out the second derivative term gives: (d2y/dx2) (2(dy/dx) - x) = 0. Since either factor must always equal 0 we have either d2y/dx2 = 0 or 2(dy/dx) - x = 0. For the first equation, integrating with respect to x twice gives: y = Ax + B (the equation of a straight line!). For the second, re-arranging for dy/dx = x/2 then integrating with respect to x gives y = 1/6 x^2 + C. Substituting these solutions (involving the arbitrary constant!) and their respective derivatives back into the original differential equation (*) (which we know we can do because the solution equation must satisfy the differential equation), gives us B = A^2 in the first case and C = 1/12 x^2 in the second.

SB
Answered by Samuel B. STEP tutor

1912 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

STEP 2 - 2018, Q6i): Find all pairs of positive integers (n, p), where p is a prime number, that satisfy n! + 5 = p .


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Show that i^i = e^(-pi/2).


Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning