How/when should I use the product rule for differentiation?

The product rule can be used to differentiate a function that is formed of the product of two other functions;

e.g f(x)=x2ex

the product rule is as follows; if f(x) is split up into u.v (in this case u would be x2 and v would be ex), the derivative of th whole function is (u.dv/dx) + (v.du/dx)

so in this case u=x2, following standard differentiation du/dx= 2x

v=ex, dv/dx=ex

u.dv/dx=x2ex

v.du/dx=2xex

so the whole function differentiated = ex(x2+2x)

 

Answered by Abi T. Maths tutor

6046 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does integration by parts work?


Find the general solution of 2 dy/dx - 5y = 10x


Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0


Given that 4 sin(x) + 5 cos(x) = 0 , find the value of tan x .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences