How can I find the equation of a straight line on a graph?

One good way is to use the formula y - y1 = m(x - x1)where (x1,y1) is a point on the line and m is the gradient of the line. This is derived from the definition of the gradient m=(y2-y1)/(x2-x1)What is the equation of the line perpendicular to y = 2x +10 that passes through the point (1, 12)? Give your answer in the form ax + by + c = 0 where a, b, and c are integers. First draw out the problem. We need a point on the line we are trying to find (the perpendicular) and this is given in the question as (1,12).Therefore x1=1 and y1=12.Next we have to find the gradient of the perpendicular line. The original gradient is 2. The perpendicular gradient is the negative reciprocal so m = -1/2.Now we have all the values we need to substitute back into the original formula, y - y1 = m(x - x1).This gives: y - 12 = -1/2 (x - 1).
Always finish of your answer by rereading the question and making sure you give you answer in the correct form. To re-arrange to ax + by + c = 0 first get rid of the brackets by multiplying by -2:-2(y-12) = x - 1-2y +24 = x - 1-2y - x + 24 = -1-2y - x + 25 = 0This is a perfectly acceptable answer but if you will be using it for further questions you may find it easier to multiply both sides by -1 giving2y + x - 25 =0
If you have time you should check your answer by substituting the point that is on the line, which should satisfy the equation.2(12) + 1 - 25 =24 + 1 - 25 +25 -25 = 0 as required

MB
Answered by Madeleine B. Further Mathematics tutor

4224 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences