evaluate the integral of lnx

this is an example of an integration by parts problem, we must use integration by parts to evaluate this integral;although this would not be entirely obvious as the integral does not seem to be the product of two functions. The key to successfully evaluating this integral is noting that lnx= 1*lnx we can consider this as a product of two functions now we can let u=lnx and differentiating both sides gives du=1/x dx. we also let dv=1 dx and hence integrating both sides yields v=x. applying the integration by parts formula will give us the integral of lnx being equal to xlnx -x + C

AR
Answered by Aaron R. Maths tutor

3096 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.


What is the area under the graph of (x^2)*sin(x) between 0 and pi


dy/dx= 2x/2 - 1/4x, what is d2y/dx2?


Integrate 3x^2+cos(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning