evaluate the integral of lnx

this is an example of an integration by parts problem, we must use integration by parts to evaluate this integral;although this would not be entirely obvious as the integral does not seem to be the product of two functions. The key to successfully evaluating this integral is noting that lnx= 1*lnx we can consider this as a product of two functions now we can let u=lnx and differentiating both sides gives du=1/x dx. we also let dv=1 dx and hence integrating both sides yields v=x. applying the integration by parts formula will give us the integral of lnx being equal to xlnx -x + C

AR
Answered by Aaron R. Maths tutor

2991 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a table showing grouped data and the frequency of each class, find the median Q2


Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


How to differentiate y=2x(x-2)^5 to find dy/dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning