Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.

This question is concerned with balancing forces. First, we must consider what forces are acting on the satellites. What is stopping the satellite from shooting off into space and what is preventing it from falling into the object it is orbiting. In this case, the two forces acting on it are a gravitational force and a centripetal force. Since it is a circular orbit we know both of these are equal at all times. Hence we must balance these two forces:
Gravitational force = GmM/r^2Centripetal force = mr(2PiT)^2
Hence, mr(2Pi/T)^2 = GmM/r^2.r(2Pi/T)^2 = GM/r^2 (cancelled the equal mass m)r(4Pi^2)/T^2 = GM/r^2 (expand out the bracket).r^3(4Pi^2) = GM*T^2 (rearrange T and r)We are looking for a proportionality, hence we can remove any constants. Here,Pi,G and M are all constants. Hence, we are left with T^2 is proportional to r^3




CM
Answered by Charlie M. Physics tutor

9320 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction


Calculate the root mean squared speed for 16g of oxygen gas at 50(deg Celsius) and explain why we use this instead of the average velocity of all the particles.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences