Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.

This question is concerned with balancing forces. First, we must consider what forces are acting on the satellites. What is stopping the satellite from shooting off into space and what is preventing it from falling into the object it is orbiting. In this case, the two forces acting on it are a gravitational force and a centripetal force. Since it is a circular orbit we know both of these are equal at all times. Hence we must balance these two forces:
Gravitational force = GmM/r^2Centripetal force = mr(2PiT)^2
Hence, mr(2Pi/T)^2 = GmM/r^2.r(2Pi/T)^2 = GM/r^2 (cancelled the equal mass m)r(4Pi^2)/T^2 = GM/r^2 (expand out the bracket).r^3(4Pi^2) = GM*T^2 (rearrange T and r)We are looking for a proportionality, hence we can remove any constants. Here,Pi,G and M are all constants. Hence, we are left with T^2 is proportional to r^3




Answered by Charlie M. Physics tutor

8998 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the de Broglie wavelength of a dust particle that has a mass of 1e-10 kg and a velocity of 0.05m/s?


In the Photoelectric Effect, what is mean by 'threshold frequency' and how does the magnitude a photons frequency effect the electron it is absorbed by?


If a car is travelling over a curved hill, what is the maximum speed it can travel before losing contact with the road surface?


What are the assumptions made when calculating values regarding an Ideal Gas?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences