integrate the following: 2x^4 - 4/sqrt(x) +3 with respect to x

The 3 terms of this equation can be integrated separately. The general integration of xn is (xn+1)/n+1 where n is a real number not equal to -1. This can be applied to the terms 2x4, -4/sqrt(x) and 3 separately. 2x5 becomes (2x5)/5. -4/sqrt(x) can be rewritten as -4x-0.5 which integrates as -4x0.5/(0.5) which can be simplified as -8sqrt(x). Finaly, 3 will become 3x (this is because 3 can be rewritten as 3x0 so will therefore integrate as 3x).
All together this gives the following equation as the solution: (2x5 )/5- 8sqrt(x) +3x + C (don't forget the +C after every integration)

AF
Answered by Adrien F. Maths tutor

3714 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


What are the first 4 non-zero terms in the binomial expansion of (2+3x)^6


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


Find the differential of f(x)=y where y=3x^2+2x+4. Hence find the coordinates of the minimum point of f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning