integrate the following: 2x^4 - 4/sqrt(x) +3 with respect to x

The 3 terms of this equation can be integrated separately. The general integration of xn is (xn+1)/n+1 where n is a real number not equal to -1. This can be applied to the terms 2x4, -4/sqrt(x) and 3 separately. 2x5 becomes (2x5)/5. -4/sqrt(x) can be rewritten as -4x-0.5 which integrates as -4x0.5/(0.5) which can be simplified as -8sqrt(x). Finaly, 3 will become 3x (this is because 3 can be rewritten as 3x0 so will therefore integrate as 3x).
All together this gives the following equation as the solution: (2x5 )/5- 8sqrt(x) +3x + C (don't forget the +C after every integration)

Answered by Adrien F. Maths tutor

3231 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the set of values for x that satisfy the below equation?


Differentiate y=(3x-1)/(2x-1)


How do i solve two linear simultaneous equations 2x+y=7 & 3x-y=8 ?


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences