integrate the following: 2x^4 - 4/sqrt(x) +3 with respect to x

The 3 terms of this equation can be integrated separately. The general integration of xn is (xn+1)/n+1 where n is a real number not equal to -1. This can be applied to the terms 2x4, -4/sqrt(x) and 3 separately. 2x5 becomes (2x5)/5. -4/sqrt(x) can be rewritten as -4x-0.5 which integrates as -4x0.5/(0.5) which can be simplified as -8sqrt(x). Finaly, 3 will become 3x (this is because 3 can be rewritten as 3x0 so will therefore integrate as 3x).
All together this gives the following equation as the solution: (2x5 )/5- 8sqrt(x) +3x + C (don't forget the +C after every integration)

Answered by Adrien F. Maths tutor

3229 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = x^2 − 2*x − 24*sqrt(x) - i) find dy/dx ii) find d^2y/dx^2


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.


How do I rationalise the denominator of a fraction which consists of surds?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences