Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0

The first step is to recognise that, by the chain rule, dy/dx = dy/dt * dt/dx.
dy/dt and dt/dx can both be found by differentiating the functions given in the question, to give dy/dt and dx/dt. dt/dx is the inverse of dx/dt.
dy/dt = 3 + 16t^-3 by following the standard rule for differentiation ( y = x^n, dy/dx = nx^(n-1) )
dx/dt = 3(t-1)^2 by substitution. By saying the u = t-1, the function in y becomes x= u^3. Again using the chain rule, dx/dt = dx/du * du/dt. dx/du = 3u^2, and du/dt = 1. Therefore, dx/dt = 3(t-1)^2. Inverting this function gives dt/dx = 1/3*(t-1)^-2.
The final solution requires multiplying the functions for dy/dt and dt/dx to give dy/dx. dy/dx = dy/dt * dt/dx = (3 + 16t^-3) * 1/3*(t-1)^-2 = 3+16t^-3/3(t-1)^2

AC
Answered by Alex C. Maths tutor

20815 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two numbers add to make 1000. What would they have to be to maximise their product?


Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


What is the product rule in differentiation?


How to integrate ln(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning