Why is it that the sum of all natural numbers up to n is 1/2(n)(n+1)?

First let's consider the case of even numbers. Suppose n is even, then it must be double some other number, so we have:
n = 2k
Where k is another natural number. We want to find out what:
1 + 2 + ... + (n - 1) + n
is equal to.
We can write this as :
1 + 2 + ... + (k - 1) + k + (k + 1) + (k + 2) + ... + (n - 1) + n
Now let's rearrange this equation, by pairing the first term with the last, second with the second last and so on. We end up with:
(1 + n) + (2 + (n - 1)) + ... + ((k - 1) + (k + 2)) + (k + (k + 1)) ()
Notice how each pair has the same value, which is (n + 1), and that there are k pairs. So we are adding (n + 1) to itself k times, which means the whole sum is actually :
k(n + 1)
But since n is double k, the sum is also:
1/2(n)(n + 1)
Which is what we were looking for. If n is odd, we have a slight problem, because we can't pair up the numbers like we did at (
). We can easily fix this by re-writing the sum like this:
0 + 1 + 2 + ... + (n - 1) + n
And carrying on just as we did earlier.

IM
Answered by Ibrahim M. Maths tutor

3086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial p(x) is, p(x)= x3-5x2-8x+48.Use the Factor Theorem to show that (x + 3)is a factor of p(X)


Solve the simultaneous equations y = x^2 - 6x and 2y + x - 6 = 0


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences