Find the values of k for which the equation (2k-3)x^2- kx+(k-1)=0 has equal roots.

For a quadratic to have equal roots, the value of the discriminant (b2-4ac) =0. This means that the quadratic formula yields only one result (or two equal roots), since x=(-b ±0)/2a , thus if a and b are constants, the 'equal' values of x are the constant -b/2a. This gives us a new quadratic. If a=2k-3, b=k and c=k-1, (b2-4ac) =0=k2-4(2k-3)(k-1).Expanding the brackets we get k2-8k2+8k+12k-12=0 or -7k2+20k-12=0. If we use the quadratic formula k=(-20±√(400-4(-7)(-12)))/2(-7) =(-20±√(400-336)/(-14)=(-20±8)/-14. Thus we get our two answers for k as k=-28/-14 or k=-12/-14, in their simplest form k=2, k=6/7.
To check your answer, you simply have to put it back into the first equation:For k=2:(2(2)-3)x2 - (2)x +(2) -1 = 0 ---> x2 -2x +1 =0 Factorise: (x-1)(x-1) thus the equal roots are x=1
For k=6/7:(2(6/7)-3)x2 - (6/7)x +(6/7)-1=0 ----> (-9/7)x2 - (6/7)x - (1/7)=0 or 9x2 +6x + 1=0 Factorise: (3x+1)(3x+1) thus the equal roots are x=-1/3

HK
Answered by Henry K. Maths tutor

11832 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify 7h + 5k + h - 7k


Julia wants to buy a new computer. 20% VAT is added to the price of the computer so that she now has to pay £300. What was the original price of the computer without VAT.


There are only 7 blue pens, 4 green pens and 6 red pens in a box. One pen is taken at random from the box. Write down the probability that this pen is blue.


What are the different averages?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning