Find the values of k for which the equation (2k-3)x^2- kx+(k-1)=0 has equal roots.

For a quadratic to have equal roots, the value of the discriminant (b2-4ac) =0. This means that the quadratic formula yields only one result (or two equal roots), since x=(-b ±0)/2a , thus if a and b are constants, the 'equal' values of x are the constant -b/2a. This gives us a new quadratic. If a=2k-3, b=k and c=k-1, (b2-4ac) =0=k2-4(2k-3)(k-1).Expanding the brackets we get k2-8k2+8k+12k-12=0 or -7k2+20k-12=0. If we use the quadratic formula k=(-20±√(400-4(-7)(-12)))/2(-7) =(-20±√(400-336)/(-14)=(-20±8)/-14. Thus we get our two answers for k as k=-28/-14 or k=-12/-14, in their simplest form k=2, k=6/7.
To check your answer, you simply have to put it back into the first equation:For k=2:(2(2)-3)x2 - (2)x +(2) -1 = 0 ---> x2 -2x +1 =0 Factorise: (x-1)(x-1) thus the equal roots are x=1
For k=6/7:(2(6/7)-3)x2 - (6/7)x +(6/7)-1=0 ----> (-9/7)x2 - (6/7)x - (1/7)=0 or 9x2 +6x + 1=0 Factorise: (3x+1)(3x+1) thus the equal roots are x=-1/3

Answered by Henry K. Maths tutor

10039 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3x^2 + 5x +2


How do you solve an equation with brackets?


how do ratios work


Alex wants to buy a new phone. It costs £280. Alex’s weekly wage is £420. He saves 15% of his wage each week. How many weeks does it take Alex to save enough money to buy the phone?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences