Given a quadratic equation, how do I find the coordinates of the stationary point?

Example curve: y = x2 + 4x + 5The first step is to differentiate the equation to give us the gradient at a general point. As a quadratic equation is an example of a polynomial, the solution is as follows:dy/dx = 2x2-1 + 14x1-1 + 0*5 = 2x + 4Since we know that stationary points are defined as points where the tangent line is horizontal (i.e. that the gradient is zero), the next step is simply to equate our previous equation with 0, and rearrange. This gives us x = -2. The final step step is to plug our value of x back into the original equation, to give us the corresponding y value, and hence the complete result: (-2, 1)

DG
Answered by Daniel G. Maths tutor

5219 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

ln(2x^2 + 9x – 5) = 1 + ln(x^2 + 2x – 15). Express x in terms of e


Find the derivative of f(x) = 2xe^x


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


A particle is placed on a rough plane which is inclined to the horizontal at an angle θ, where tanθ =4/3, and released from rest. The coefficient of friction between the particle and the plane is 1/3. Find the particle's acceleration.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning