Using implicit differentiation, write the expression "3y^2 = 4x^3 + x" in terms of "dy/dx"

To differentiate this expression with respect to "x", any terms comprising of an "x" must multiply their powers with their numerical values and subtract 1 from the power. However to differentiate a non-"x" term with respect to "x" we need to do it differently. The value of the "y" term must be multiplied by "dy/dx" before it can be differentiated as normal. The process looks like this:
3y2 -> 3y2 (dy/dx) -> 6y(dy/dx). Therefore the differential is 6y(dy/dx) = 12x2 + 1. However, the question asks for the answer in terms of "dy/dx", so we must manipulate the expression by dividing both sides by "6y". Then we get the final answer of:dy/dx = (12x2 + 1)/6y.

Answered by Brendan W. Maths tutor

3266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?


How will you simplify (3 xsquare root of 2) to the square?


Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3


a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences