Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).

To find the binomial expansion of this expression we need to use a formula. The formula states that for expressions of (1 + x)n it can be written as: 1 + nx + (n(n-1)x2)/2 ...
As our initial expression does not contain a "1" we need to manipulate it first. Remove a factor of 3 from our expression, taking care to keep the power the same, giving " 31/2(1 + 2x)1/2 ". From here we can substitute in our values, to give a binomial expansion of 31/2(1 + x - x/2). This can further be simplified by bringing the factor back into the bracket.

BW
Answered by Brendan W. Maths tutor

6355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is an Inverse function?


How do you express partial fractions of a proper fraction that has a denominator of (x-2)(x+1)^2


Find dy/dx, given that y=(3x+1)/(2x+1)


Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning