Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).

To find the binomial expansion of this expression we need to use a formula. The formula states that for expressions of (1 + x)n it can be written as: 1 + nx + (n(n-1)x2)/2 ...
As our initial expression does not contain a "1" we need to manipulate it first. Remove a factor of 3 from our expression, taking care to keep the power the same, giving " 31/2(1 + 2x)1/2 ". From here we can substitute in our values, to give a binomial expansion of 31/2(1 + x - x/2). This can further be simplified by bringing the factor back into the bracket.

Answered by Brendan W. Maths tutor

5437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of inverse tan(x) 1/(1+x^2)?


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


Differentiate y = 2e^(2x+1)


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences