How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2

(Explain why it is called "parametric"). The definition of chain rule says that we can re-write the derivative dy/dx in terms of the "parameter t" by dy/dx = (dy/dt) X (dt/dx). (Explain why this is the case).
So we have two equations, x and y, both equal to some perimeter t. To calculate the derivative dy/dx is simply the same as calculating the derivatives w.r.t "t" (either by inspection, product, or quotient rules) and then we multiply them together using the definition. That is dx/dt = 3(t-1)^2 , dy/dt = 3+16t^ (−3). So (using the definition) dy/dx=(3+16t^ (−3)) X ( 1/3(t-1)^2) = (3 + 16𝑡^−3)/(3(𝑡 − 1)^ 2). 

Answered by Adil F. Maths tutor

3228 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A uniform ladder of mass 5 kg sits upon a smooth wall and atop a rough floor. The floor and wall are perpendicular. Draw a free body diagram for the ladder (you do not need to calculate any forces).


Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


If I have the equation of a curve, how do I find its stationary points?


Differentiate 2x/cos(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences