How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2

(Explain why it is called "parametric"). The definition of chain rule says that we can re-write the derivative dy/dx in terms of the "parameter t" by dy/dx = (dy/dt) X (dt/dx). (Explain why this is the case).
So we have two equations, x and y, both equal to some perimeter t. To calculate the derivative dy/dx is simply the same as calculating the derivatives w.r.t "t" (either by inspection, product, or quotient rules) and then we multiply them together using the definition. That is dx/dt = 3(t-1)^2 , dy/dt = 3+16t^ (−3). So (using the definition) dy/dx=(3+16t^ (−3)) X ( 1/3(t-1)^2) = (3 + 16𝑡^−3)/(3(𝑡 − 1)^ 2). 

Answered by Adil F. Maths tutor

3138 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Turning points of the curve y = (9x^2 +1)/3x+2


Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.


Integrate sin^2(x) with respect to x


How do you derive the quadratic formula?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences