How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?

We find the eigenvalues (here called "k") by solving the characteristic equation det(M - kI) = 0. For a 2x2 matrix ((a, b), (c,d)) the determinant is ad - bc, we set this equal to zero and solve the resulting quadratic (using the quadratic formula or otherwise). We can then substitute the found values of k into the eigenvalue equation Mv = kv to find the eigenvectors v by observing that (M - kI)v = 0 and solving the resulting system of equations.The use of these calculations is that they completely characterise the action of the matrix in question. From the eigenvalues and eigenvectors we can see exactly how a matrix affects other objects. This is especially useful in fields such as physics where we want to use mathematics to model the world around us.

Answered by Tutor120184 D. Maths tutor

3596 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


How do you integrate ln(x) with respect to x?


Integrate 3 sin(x) + cos(2x)


Derive the quadratic formula (Hint: complete the square)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences