A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.

dy/dx=(dy/dt)*(dt/dx); dy/dt=3+16t-3; dx/dt=3(t-1)2; dt/dx=1/3(t-1)2; dy/dx=(3+16t-3)/3(t-1)2

Answered by Nadia C. Maths tutor

3283 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


What does dy/dx represent?


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


Find dy/dx if y=(x^3)(e^2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences