Differentiate y = 2xln(x)

This is an example of a question where you would use the product rule, where if y = uv then dy/dx = udv/dx + vdu/dx. In this case u = 2x and v = ln(x). So first of all we will differentiate 2x which is fairly easy and is equal to 2 and then we will differentiate ln(x) which is slightly harder and equal to 1/x, this is one that you will have to learn by heart.
Now that we have the differentials of 2x and ln(x) we can put it all together to find the differential of y. So by using the product rule from earlier dy/dx = 2x*(1/x) + ln(x)*2 which when we simplify is equal to 2( 1+ln(x) ).

TW
Answered by Toby W. Maths tutor

7269 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


Why does sin^2(x)+cos^2(x)=1?


Find the coordinates of the stationary points of the curve 3x=y+6x+3


Find the exact solutions for 4 − x^2 = |2x − 1|


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning