Differentiate y = 2xln(x)

This is an example of a question where you would use the product rule, where if y = uv then dy/dx = udv/dx + vdu/dx. In this case u = 2x and v = ln(x). So first of all we will differentiate 2x which is fairly easy and is equal to 2 and then we will differentiate ln(x) which is slightly harder and equal to 1/x, this is one that you will have to learn by heart.
Now that we have the differentials of 2x and ln(x) we can put it all together to find the differential of y. So by using the product rule from earlier dy/dx = 2x*(1/x) + ln(x)*2 which when we simplify is equal to 2( 1+ln(x) ).

TW
Answered by Toby W. Maths tutor

7905 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


Integrate 4x^3 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning