Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .

Using V = pi* integral of y2 between b and a with respect to x , where V is the volume of generated solid.y2 = 2x + 1 Integrating between given limits yields a result of 3.75Multiplying through by pi leaves the final result as 3.75 pi as an exact solution .

Answered by Dominik S. Maths tutor

2373 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Bayes' rule and why is it useful?


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


Show that x^2 - 8x +17 <0 for all real values of x


Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences