Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .

Using V = pi* integral of y2 between b and a with respect to x , where V is the volume of generated solid.y2 = 2x + 1 Integrating between given limits yields a result of 3.75Multiplying through by pi leaves the final result as 3.75 pi as an exact solution .

DS
Answered by Dominik S. Maths tutor

3018 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin3x-3x= f(x)


Differentiate y = x^2 - 2x-3 + e^3x + 2ln(x)


Differentiate with respect to x y=(x^3)ln2x


By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning