Complete the indefinite integral : ∫x lnx dx

Use the formula: ∫uv' dx = uv - ∫u'v dx (use I = the integral we're looking for)Note we cant integrate ln x easily but we can differentiate into 1/x so we use:u = ln x and v' = x we have u' = 1/x and v = x2/2 subbing these values into the above formula we get:I = x2/2 lnx - ∫1/x x2/2 dx = x2/2 lnx - ∫x/2 dx= x2/2 lnx - x2/4 + C

Answered by Katy D. Maths tutor

5514 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


Find the location of the turning point of the following curve, y = x^2 + 6x - 7


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


Differentiate with respect to x: (x^2+5)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences