Complete the indefinite integral : ∫x lnx dx

Use the formula: ∫uv' dx = uv - ∫u'v dx (use I = the integral we're looking for)Note we cant integrate ln x easily but we can differentiate into 1/x so we use:u = ln x and v' = x we have u' = 1/x and v = x2/2 subbing these values into the above formula we get:I = x2/2 lnx - ∫1/x x2/2 dx = x2/2 lnx - ∫x/2 dx= x2/2 lnx - x2/4 + C

Answered by Katy D. Maths tutor

5699 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


f(x) = x^3 + 3x^2 + 5. Find f'(x) and f''(x).


Differentiate z = e^(3y^2+5) with respect to y. (Hint: use chain rule.)


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences