Explain why the equation tanx + cotx = 1 does not have real solutions.

First of all, we need to express tangent and cotangent in terms of sine and cosine using the identities: tanx = sinx / cosx and cotx = cosx / sinx. Substituting these expressions into the initial equation we get: sinx / cosx + cosx / sinx = 1. Summing the two terms on the right hand side we obtain: [(sinx)^2 + (cosx)^2] / (sinxcosx) = 1.
Now it is important to remember two fundamental trigonometry identities in order to simplify the right hand side further. These identities are: (sinx)^2 + (cosx)^2 = 1 and sin2x = 2
sinxcosx, which can be rearranged into sinxcosx = (1/2)*sin2x. Substituting these expressions in the numerator and denominator respectively, we get: 1/[(1/2)*sin2x] = 1. Rearranging: sin2x = 2. However, we know that the values of sine are between -1 and 1, hence there is no real value of x such that the equation is verified.  

Related Further Mathematics A Level answers

All answers ▸

Write down the equations of the three asymptotes and the coordinates of the points where the curve y = (3x+2)(x-3)/(x-2)(x+1) crosses the axes.


Why is the argument of a+bi equal to arctan(b/a)?


Express the complex number (1+i)/(1-i) in the form x+iy


How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences