Explain why the equation tanx + cotx = 1 does not have real solutions.

First of all, we need to express tangent and cotangent in terms of sine and cosine using the identities: tanx = sinx / cosx and cotx = cosx / sinx. Substituting these expressions into the initial equation we get: sinx / cosx + cosx / sinx = 1. Summing the two terms on the right hand side we obtain: [(sinx)^2 + (cosx)^2] / (sinxcosx) = 1.
Now it is important to remember two fundamental trigonometry identities in order to simplify the right hand side further. These identities are: (sinx)^2 + (cosx)^2 = 1 and sin2x = 2
sinxcosx, which can be rearranged into sinxcosx = (1/2)*sin2x. Substituting these expressions in the numerator and denominator respectively, we get: 1/[(1/2)*sin2x] = 1. Rearranging: sin2x = 2. However, we know that the values of sine are between -1 and 1, hence there is no real value of x such that the equation is verified.  

Related Further Mathematics A Level answers

All answers ▸

How do i figure out if integrals are improper or not and how do i know which limit is undefined?


In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences