Factorise 6x^2 + 7x - 3=0

In order to solve the equation, we need to find a way to break the '7x' term in the middle that allows factorisation. We also need to consider the fact that the last term '-3x' has a minus sign. This broadens the possibilities of combinations that allow for factorisation.
After various attempts, we realise that 7x = -2x + 9x. Plugging this into the initial equation, we obtain 6x^2 - 2x + 9x - 3 = 0. After the initial factorisation, we obtain 2x(3x-1) + 3(3x-1)=0. This can be written as (2x+3)(3x-1)=0.
Qed. This means that the problem is solved.

Answered by Silvia M. Maths tutor

7061 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express as a single logarithm 2 loga 6 loga 3 [2 marks]


Find dy/dx when y=(3x-1)^10


How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


How do you differentiate y=x^x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences