Show that the line with equation ax + by + c = 0 has gradient -a/b and cuts the y axis at -c/b?

This question involves inspecting the answers that have been provided to us. We have been given a constant gradient, and a point at which the line given by the equation cuts the y axis. This, therefore, means that this is a straight line equation, and can be rearranged in the form y = mx + c , where m is the gradient, and c is the y-axis intercept. Moving 'ax' and 'c' to the other side of the equation, and dividing by 'b', we get the straight line equation y = (-a/b)x - c/b . An example of what this straight line graph may look like can be shown on the whiteboard with example values.

DE
Answered by Dominic E. Maths tutor

8739 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.


If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


Integrate ln(e^x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning