Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.

Start with the left hand side (LHS) of the equation. r^2(r + 1)^2 - r^2(r - 1)^2Take the equivalent terms from the separate parts of the LHS outside of set of brackets.r^2[(r + 1)^2 - (r - 1)^2]Expand the interior of the square bracket.r^2[(r^2 + 2r + 1) - (r^2 - 2r + 1)]Simplify the square bracket.r^2[4r]This is equivalent to 4r^3, as desired by the question.

Answered by Andrew D. Maths tutor

6186 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3


Solve the equation sin2x = tanx for 0° ≤ x ≤ 360°


What is the y-coordinate minimum point of y = 3x^2 + x - 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences