Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.

Start with the left hand side (LHS) of the equation. r^2(r + 1)^2 - r^2(r - 1)^2Take the equivalent terms from the separate parts of the LHS outside of set of brackets.r^2[(r + 1)^2 - (r - 1)^2]Expand the interior of the square bracket.r^2[(r^2 + 2r + 1) - (r^2 - 2r + 1)]Simplify the square bracket.r^2[4r]This is equivalent to 4r^3, as desired by the question.

AD
Answered by Andrew D. Maths tutor

7159 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle, P, moves along the x-axis. At time t seconds, t > 0, the displacement, is given by x=1/2t^2(t ^2−2t+1).


By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


How do you differentiate y=sin(cos(x))?


Differentiate Sin^2(X) with respect to X


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning