Express (2x-14)/(x^2+2x-15) as partial fractions

Partial fractions is a method of expressing a single fraction with multiple factors in the denominator as a sum of fractions. First we must factorise the denominator (bottom of the fraction).x2+2x-15 = (x+5)(x-3)We can then begin to write the fraction in partial form: (2x - 14)/[(x+5)(x-3)] = A/(x+5) + B/(x-3)From here, we only need to solve for A and B. First we must multiply through by the denominator.2x - 14 = A(x-3) + B(x+5) There are two methods of continuing. Firstly, and most simply, take values of x that set each of the bracket-coefficients of A and B to zero. We first do this by taking x=3, so we get -8 = 8B => B = -1, then x=-5, -14 = -8A => A = 3. Secondly, we can equate the coefficients of x and x0 to obtain simultaneous equations, then solve them for values of A and B. Equating x, 2 = A + B, then equating x0, -14 = -3A +5B. Solve these as you would any simultaneous equation to achieve the same result. To finish up, we substitute our values of A and B into our partial form giving: (2x - 14)/(x2+2x-15) = 3/(x+5) - 1/(x-3)

AS
Answered by Andrew S. Maths tutor

3857 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


One important question type to be able to answer is integrating squared trig functions. like cos^2(x)


The point P (4, –1) lies on the curve C with equation y = f( x ), x > 0, and f '(x) =x/2 - 6/√x + 3. Find the equation of the tangent to C at the point P , giving your answer in the form y = mx + c. Find f(x)


Given that y=x/(2x+5) find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences