Why does a feather fall at the same rate as a hammer on the Moon?

To calculate an object's weight, we have weight = mass * gravitational field strength (W = mg). From this, we see that an object with a greater mass (e.g. a hammer compared with a feather) has a greater weight, and since weight is the force that causes falling, we might expect that it will fall faster.
However, this does not happen. If we want to work out the acceleration of an object, we use Newton's second law, force = mass * acceleration (F = ma). Since weight is the force acting on the hammer or feather, we can equate our expression for the weight, mg, to ma:
ma = mg
We can then divide both sides of this equation by m, yielding
a = g
And therefore, the acceleration a doesn't depend on m, the object's mass. For this reason, a hammer and a feather will fall with the same acceleration on the Moon, as long as there are no other forces.

JT
Answered by Joel T. Physics tutor

9602 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain how Maxima and Minima occur in Young's double slit experiment


In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.


A ball is rolled, travelling 10 m north in 5s, then 10 m east in 10s. What is the total distance and average speed of the ball? What is the total displacement and average velocity of the ball?


Explain why excited atoms only emit certain frequencies of radiation after an electron collides with the atom


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning