Why does a feather fall at the same rate as a hammer on the Moon?

To calculate an object's weight, we have weight = mass * gravitational field strength (W = mg). From this, we see that an object with a greater mass (e.g. a hammer compared with a feather) has a greater weight, and since weight is the force that causes falling, we might expect that it will fall faster.
However, this does not happen. If we want to work out the acceleration of an object, we use Newton's second law, force = mass * acceleration (F = ma). Since weight is the force acting on the hammer or feather, we can equate our expression for the weight, mg, to ma:
ma = mg
We can then divide both sides of this equation by m, yielding
a = g
And therefore, the acceleration a doesn't depend on m, the object's mass. For this reason, a hammer and a feather will fall with the same acceleration on the Moon, as long as there are no other forces.

JT
Answered by Joel T. Physics tutor

9250 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If the highest frequency a song is 10 kHz and it is encoded at 16 bits per sample what is the minimum number of bytes needed to encode the 3 minute song?


Explain what is meant by the term "plastic deformation".


Describe how the strong nuclear force between two nucleons varies with the separation of the nucleons, quoting suitable values for separation.


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning