Differentiate x^x

This can't be differentiated with the usual methods (chain rule, product rule). First we set y = xx, and our objective is to calculate dy/dx in terms of x.
To turn this function into more familiar functions, we log both sides:
ln y = ln(xx) = x ln x
where in the second equality we have used the logarithm rule ln(ab) = b ln a.
Then we differentiate both sides with respect to x. For the left hand side, we use the chain rule, dz/dx = (dz/dy) * (dy/dx), with z = ln y:
d(ln y)/dx = d(ln y)/dy * dy/dx = (1/y) * dy/dx
On the right hand side, we use the product rule, d(uv)/dx = u * dv/dx + v*du/dx, with u = x and v = ln x:
d(x ln x)/dx = x * (1/x) + ln x * 1 = 1 + ln x
So then we have
(1/y) * dy/dx = 1 + ln x
and our goal is to find dy/dx in terms of x only. To do this, we multiply both sides by y and substitute y = xx, leaving
dy/dx = xx (1 + ln x)

JT
Answered by Joel T. Maths tutor

12058 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations y = x + 3, y^2 - x^2 + 3 = -6x


How to do the chain rule.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences