Differentiate x^x

This can't be differentiated with the usual methods (chain rule, product rule). First we set y = xx, and our objective is to calculate dy/dx in terms of x.
To turn this function into more familiar functions, we log both sides:
ln y = ln(xx) = x ln x
where in the second equality we have used the logarithm rule ln(ab) = b ln a.
Then we differentiate both sides with respect to x. For the left hand side, we use the chain rule, dz/dx = (dz/dy) * (dy/dx), with z = ln y:
d(ln y)/dx = d(ln y)/dy * dy/dx = (1/y) * dy/dx
On the right hand side, we use the product rule, d(uv)/dx = u * dv/dx + v*du/dx, with u = x and v = ln x:
d(x ln x)/dx = x * (1/x) + ln x * 1 = 1 + ln x
So then we have
(1/y) * dy/dx = 1 + ln x
and our goal is to find dy/dx in terms of x only. To do this, we multiply both sides by y and substitute y = xx, leaving
dy/dx = xx (1 + ln x)

Answered by Joel T. Maths tutor

11410 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

State the trigonometric identities for sin2x, cos2x and tan2x


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences