Show that (x+2)(x+3)(x+5) can be written in the form ax^3 + bx^2 + cx +d, where a,b, c and d are positive integers

I would tell them to start multiplying out the first brackets (x+2)(x+3)! I would do this by timesing x by everything in the second bracket and then 2 by everything in the second brakcet! Giving the answer x2 + 3x + 2x + 6! Then I would explain because 3x are both factors of x, they can be added together as 5x! So i would now times my answer that I have just got to the third bracket! (x2+ 5x+ 6)(x+5)and now I would use the same method as before by timesing each bit of the second bracket by x2 ,giving x3 + 5x2 Then times everything in the second bracket by 5x, giving 5x2 +25x! and then finally timesing the second bracket by 6! Giving 6x + 30 !
Now if put it all together I have x^3 + 5x^2 + 5x^2 + 25x + 6x +30! And if we add all the integers that have he same factor, for example 25x + 6x will go together to me 31x, we got x^3 + 10x^2 +31x +30

Answered by Bridget P. Maths tutor

6896 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

y = (x/3) - 14. Rearrange this equation to make x the subject.


Refer to question taken from Edexcel Maths Paper


how do ratios work


Find the equation of the straight line which passes through the point (0, 3) and is perpendicular to the straight line with equation y = 2x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences