Solve algebraically the simultaneous equations x^2 +y^2 =25, y – 3x = 13

This question is done by substituting either the x or y. To do this, rearrange the second equation to make y the subject. We make y the subject as it keeps the equation and calculation simple. After rearranging the equation, we get y=13+3x. Now, sub this into the first equation to get x^2+(13+3x)^2=25. Expand the brackets out first to get x^2+169+6x+9x^2=25. Then add or subtract (in this case only add) the same x's to get 10x^2+6x+169=25. Now bring the 25 over to the left to get 10x^2+6x+144=0. Divide through by 2 to simplify to get 5x^2+3x+72=0. Then factorise to get (x+3)(5x+24)=0. Then separately equal the two brackets with 0. Then X are x=-3, x=-(24/5). Then sub these back into the equation given by the question. This case y-3x=13 as its easier to calculate. So y=4, y=-(7/5).

Answered by Shun S. Maths tutor

19631 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

For any given journey, ABC Taxis charge customers a base fare of £5 plus 80p per mile. XYZ Taxis charge a base fare of £3 plus £1.20 per mile. Find the number of miles, x, that must be traveled in order for ABC taxis to be the cheaper journey option.


f(x) = 5x − 12. (i) Calculate f(4). (ii) Find f( x + 1). Give your answer in the form ax + b .


Solve algebraically: 1) 6a + b = 16, 2) 5a - 2b = 19


Solve the simultaneous equations 3x - y = 5, x + 2y = -3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences