Solve algebraically the simultaneous equations x^2 +y^2 =25, y – 3x = 13

This question is done by substituting either the x or y. To do this, rearrange the second equation to make y the subject. We make y the subject as it keeps the equation and calculation simple. After rearranging the equation, we get y=13+3x. Now, sub this into the first equation to get x^2+(13+3x)^2=25. Expand the brackets out first to get x^2+169+6x+9x^2=25. Then add or subtract (in this case only add) the same x's to get 10x^2+6x+169=25. Now bring the 25 over to the left to get 10x^2+6x+144=0. Divide through by 2 to simplify to get 5x^2+3x+72=0. Then factorise to get (x+3)(5x+24)=0. Then separately equal the two brackets with 0. Then X are x=-3, x=-(24/5). Then sub these back into the equation given by the question. This case y-3x=13 as its easier to calculate. So y=4, y=-(7/5).

SS
Answered by Shun S. Maths tutor

23731 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angled triangle has one angle size 60 degrees, and hypotenuse of length 32cm. Calculate the length of the side opposite the 60 degree angle, to 3sf.


find the second degree equation that passes through the points: (0,1) (2,2) (1,0)


15x^2 − 4x + x^2 + 9x − x − 6x^2 =


Paul travels from Rye to Eston at an average speed of 90 km/h. He travels for T hours. Mary makes the same journey at an average speed of 70 km/h. She travels for 1 hour longer than Paul. Work out the value of T


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning