Solve algebraically the simultaneous equations x^2 +y^2 =25, y – 3x = 13

This question is done by substituting either the x or y. To do this, rearrange the second equation to make y the subject. We make y the subject as it keeps the equation and calculation simple. After rearranging the equation, we get y=13+3x. Now, sub this into the first equation to get x^2+(13+3x)^2=25. Expand the brackets out first to get x^2+169+6x+9x^2=25. Then add or subtract (in this case only add) the same x's to get 10x^2+6x+169=25. Now bring the 25 over to the left to get 10x^2+6x+144=0. Divide through by 2 to simplify to get 5x^2+3x+72=0. Then factorise to get (x+3)(5x+24)=0. Then separately equal the two brackets with 0. Then X are x=-3, x=-(24/5). Then sub these back into the equation given by the question. This case y-3x=13 as its easier to calculate. So y=4, y=-(7/5).

SS
Answered by Shun S. Maths tutor

22628 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (x − 4)(2x + 3y)^2


The number of uniform spherical balls that can be produced from a given mass of lead is inversely proportional to the radius of the ball cubed. If 2744 balls can be made when the radius is 1mm, how many balls can be made when the radius is 1.4mm ?


How to be fully prepared for the exam?


How is the quadratic formula used?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning